55 research outputs found

    Network-wide localization of optical-layer attacks

    Get PDF
    Optical networks are vulnerable to a range of attacks targeting service disruption at the physical layer, such as the insertion of harmful signals that can propagate through the network and affect co-propagating channels. Detection of such attacks and localization of their source, a prerequisite for securenetwork operation, is a challenging task due to the limitations in optical performance monitoring, as well as the scalability and cost issues. In this paper, we propose an approach for localizing the source of a jamming attack by modeling the worst-case scope of each connection as a potential carrier of a harmful signal. We define binary words called attack syndromes to model the health of each connection at the receiver which, when unique, unambiguously identify the harmful connection. To ensure attack syndrome uniqueness, we propose an optimization approach to design attack monitoring trails such that their number and length is minimal. This allows us to use the optical network as a sensor for physical-layer attacks. Numerical simulation results indicate that our approach obtains network-wide attack source localization at only 5.8% average resource overhead for the attackmonitoring trails

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems

    Get PDF
    This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature

    Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods

    Get PDF
    Hub disruption result in substantially higher transportation cost and customer dissatisfaction. In this study, first a mathematical model to design hub-and-spoke networks under hub failure is presented. For a fast and inexpensive recovery, the proposed model constructs networks in which every single demand point will have a backup hub to be served from in case of disruption. The problem is formulated as a mixed integer quadratic program in a way that could be linearized without significantly increasing the number of variables. To further ease the model’ computational burden, indicator constraints are employed in the linearized model. The resulting formulation produced optimal solutions for small and some medium size instances. To tackle large problems, three efficient particle swarm optimisation-based metaheuristics which incorporate efficient solution representation, short-term memory and special crossover operator are proposed. We present the results for two scenarios relating to high and low probabilities of hub failures and provide managerial insight. The computational results, using problem instances with various sizes taken from CAB and TR datasets, confirm the effectiveness and efficiency of the proposed problem formulation and our new solution techniques

    Network Coding for Security Against Eavesdropping Attacks in Elastic Optical Networks

    No full text
    Part 1: Regular PapersInternational audienceIn this work, routing and spectrum allocation (RSA) algorithms together with network coding (NC) are proposed for elastic optical networks. NC has been used in optical networks for protection against link failures and also in multicasting to improve spectral efficiency. In this work, NC is used to protect confidential connections against eavesdropping attacks. The confidential signals are XOR-ed with other signals at different nodes in their path while transmitted through the network. These signals can be combined either at the source node and/or at intermediate nodes. To implement NC for confidential connections, a set of constraints for the NC problem in addition to the constraints of the RSA problem are incorporated to the algorithms. The combination of signals through network coding significantly increases the security of confidential connections, since an eavesdropper will receive a combination of signals from different connections, making it extremely difficult for the confidential signal to be decrypted. A number of RSA strategies are examined in terms of confidentiality, spectrum utilization, and blocking probability. Performance results demonstrate that network coding provides an additional layer of security for confidential connections with only a small increase in the spectrum usage

    A Distributed Memetic Algorithm for the Routing and Wavelength Assignment Problem

    No full text
    The Routing and Wavelength Assignment Problem deals with the routing of telecommunication traffic in all-optical networks. Ex-tending existing algorithms, we present a memetic algorithm (MA) for the static RWA by introducing a recombination operator and a scheme for distributing the computation. Compared to previously achieved re-sults for this problem, our MA significantly improves the solution qual-ity. We find provably optimal results for previously unsolved problem instances. The distributed variant using epidemic algorithms allows to find solutions of quality comparable to the MA in less real-time
    corecore